Copied to
clipboard

G = C42.165D6order 192 = 26·3

165th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.165D6, C6.1432+ 1+4, C6.1032- 1+4, C12⋊Q842C2, C4⋊C4.120D6, C122Q89C2, C423S32C2, C422C29S3, C4.D1243C2, D6⋊Q846C2, (C4×C12).9C22, C22⋊C4.42D6, C2.68(D4○D12), Dic3.Q840C2, (C2×C6).256C24, (C2×C12).97C23, D6⋊C4.48C22, C2.67(Q8○D12), C4.Dic641C2, C23.9D6.5C2, C23.8D647C2, C4⋊Dic3.55C22, C23.72(C22×S3), (C22×C6).70C23, Dic3.D448C2, Dic3⋊C4.11C22, C22.277(S3×C23), C23.11D6.5C2, (C2×Dic6).43C22, C23.21D6.3C2, (C22×S3).115C23, C35(C22.57C24), (C2×Dic3).132C23, (C4×Dic3).153C22, C6.D4.70C22, (C22×Dic3).155C22, C4⋊C4⋊S345C2, (S3×C2×C4).137C22, (C3×C422C2)⋊11C2, (C3×C4⋊C4).207C22, (C2×C4).212(C22×S3), (C2×C3⋊D4).76C22, (C3×C22⋊C4).81C22, SmallGroup(192,1271)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.165D6
C1C3C6C2×C6C22×S3S3×C2×C4C23.9D6 — C42.165D6
C3C2×C6 — C42.165D6
C1C22C422C2

Generators and relations for C42.165D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2b2, ab=ba, cac-1=ab2, dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=c5 >

Subgroups: 480 in 196 conjugacy classes, 91 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C422C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C22.57C24, C122Q8, C423S3, Dic3.D4, C23.8D6, C23.9D6, C23.11D6, C23.21D6, C12⋊Q8, Dic3.Q8, C4.Dic6, D6⋊Q8, C4.D12, C4⋊C4⋊S3, C3×C422C2, C42.165D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, 2- 1+4, S3×C23, C22.57C24, D4○D12, Q8○D12, C42.165D6

Smallest permutation representation of C42.165D6
On 96 points
Generators in S96
(1 63 93 60)(2 55 94 70)(3 65 95 50)(4 57 96 72)(5 67 85 52)(6 59 86 62)(7 69 87 54)(8 49 88 64)(9 71 89 56)(10 51 90 66)(11 61 91 58)(12 53 92 68)(13 82 43 26)(14 33 44 77)(15 84 45 28)(16 35 46 79)(17 74 47 30)(18 25 48 81)(19 76 37 32)(20 27 38 83)(21 78 39 34)(22 29 40 73)(23 80 41 36)(24 31 42 75)
(1 84 87 34)(2 79 88 29)(3 74 89 36)(4 81 90 31)(5 76 91 26)(6 83 92 33)(7 78 93 28)(8 73 94 35)(9 80 95 30)(10 75 96 25)(11 82 85 32)(12 77 86 27)(13 67 37 58)(14 62 38 53)(15 69 39 60)(16 64 40 55)(17 71 41 50)(18 66 42 57)(19 61 43 52)(20 68 44 59)(21 63 45 54)(22 70 46 49)(23 65 47 56)(24 72 48 51)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 46 19 40)(14 39 20 45)(15 44 21 38)(16 37 22 43)(17 42 23 48)(18 47 24 41)(25 74 31 80)(26 79 32 73)(27 84 33 78)(28 77 34 83)(29 82 35 76)(30 75 36 81)(49 52 55 58)(50 57 56 51)(53 60 59 54)(61 64 67 70)(62 69 68 63)(65 72 71 66)(85 94 91 88)(86 87 92 93)(89 90 95 96)

G:=sub<Sym(96)| (1,63,93,60)(2,55,94,70)(3,65,95,50)(4,57,96,72)(5,67,85,52)(6,59,86,62)(7,69,87,54)(8,49,88,64)(9,71,89,56)(10,51,90,66)(11,61,91,58)(12,53,92,68)(13,82,43,26)(14,33,44,77)(15,84,45,28)(16,35,46,79)(17,74,47,30)(18,25,48,81)(19,76,37,32)(20,27,38,83)(21,78,39,34)(22,29,40,73)(23,80,41,36)(24,31,42,75), (1,84,87,34)(2,79,88,29)(3,74,89,36)(4,81,90,31)(5,76,91,26)(6,83,92,33)(7,78,93,28)(8,73,94,35)(9,80,95,30)(10,75,96,25)(11,82,85,32)(12,77,86,27)(13,67,37,58)(14,62,38,53)(15,69,39,60)(16,64,40,55)(17,71,41,50)(18,66,42,57)(19,61,43,52)(20,68,44,59)(21,63,45,54)(22,70,46,49)(23,65,47,56)(24,72,48,51), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,46,19,40)(14,39,20,45)(15,44,21,38)(16,37,22,43)(17,42,23,48)(18,47,24,41)(25,74,31,80)(26,79,32,73)(27,84,33,78)(28,77,34,83)(29,82,35,76)(30,75,36,81)(49,52,55,58)(50,57,56,51)(53,60,59,54)(61,64,67,70)(62,69,68,63)(65,72,71,66)(85,94,91,88)(86,87,92,93)(89,90,95,96)>;

G:=Group( (1,63,93,60)(2,55,94,70)(3,65,95,50)(4,57,96,72)(5,67,85,52)(6,59,86,62)(7,69,87,54)(8,49,88,64)(9,71,89,56)(10,51,90,66)(11,61,91,58)(12,53,92,68)(13,82,43,26)(14,33,44,77)(15,84,45,28)(16,35,46,79)(17,74,47,30)(18,25,48,81)(19,76,37,32)(20,27,38,83)(21,78,39,34)(22,29,40,73)(23,80,41,36)(24,31,42,75), (1,84,87,34)(2,79,88,29)(3,74,89,36)(4,81,90,31)(5,76,91,26)(6,83,92,33)(7,78,93,28)(8,73,94,35)(9,80,95,30)(10,75,96,25)(11,82,85,32)(12,77,86,27)(13,67,37,58)(14,62,38,53)(15,69,39,60)(16,64,40,55)(17,71,41,50)(18,66,42,57)(19,61,43,52)(20,68,44,59)(21,63,45,54)(22,70,46,49)(23,65,47,56)(24,72,48,51), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,46,19,40)(14,39,20,45)(15,44,21,38)(16,37,22,43)(17,42,23,48)(18,47,24,41)(25,74,31,80)(26,79,32,73)(27,84,33,78)(28,77,34,83)(29,82,35,76)(30,75,36,81)(49,52,55,58)(50,57,56,51)(53,60,59,54)(61,64,67,70)(62,69,68,63)(65,72,71,66)(85,94,91,88)(86,87,92,93)(89,90,95,96) );

G=PermutationGroup([[(1,63,93,60),(2,55,94,70),(3,65,95,50),(4,57,96,72),(5,67,85,52),(6,59,86,62),(7,69,87,54),(8,49,88,64),(9,71,89,56),(10,51,90,66),(11,61,91,58),(12,53,92,68),(13,82,43,26),(14,33,44,77),(15,84,45,28),(16,35,46,79),(17,74,47,30),(18,25,48,81),(19,76,37,32),(20,27,38,83),(21,78,39,34),(22,29,40,73),(23,80,41,36),(24,31,42,75)], [(1,84,87,34),(2,79,88,29),(3,74,89,36),(4,81,90,31),(5,76,91,26),(6,83,92,33),(7,78,93,28),(8,73,94,35),(9,80,95,30),(10,75,96,25),(11,82,85,32),(12,77,86,27),(13,67,37,58),(14,62,38,53),(15,69,39,60),(16,64,40,55),(17,71,41,50),(18,66,42,57),(19,61,43,52),(20,68,44,59),(21,63,45,54),(22,70,46,49),(23,65,47,56),(24,72,48,51)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,46,19,40),(14,39,20,45),(15,44,21,38),(16,37,22,43),(17,42,23,48),(18,47,24,41),(25,74,31,80),(26,79,32,73),(27,84,33,78),(28,77,34,83),(29,82,35,76),(30,75,36,81),(49,52,55,58),(50,57,56,51),(53,60,59,54),(61,64,67,70),(62,69,68,63),(65,72,71,66),(85,94,91,88),(86,87,92,93),(89,90,95,96)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G···4M6A6B6C6D12A···12F12G12H12I
order12222234···44···4666612···12121212
size111141224···412···1222284···4888

33 irreducible representations

dim11111111111111122224444
type++++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D62+ 1+42- 1+4D4○D12Q8○D12
kernelC42.165D6C122Q8C423S3Dic3.D4C23.8D6C23.9D6C23.11D6C23.21D6C12⋊Q8Dic3.Q8C4.Dic6D6⋊Q8C4.D12C4⋊C4⋊S3C3×C422C2C422C2C42C22⋊C4C4⋊C4C6C6C2C2
# reps11121111111111111331224

Matrix representation of C42.165D6 in GL8(𝔽13)

50000000
05000000
00800000
00080000
000000910
000000104
00004300
00003900
,
107000000
63000000
001070000
00630000
00000100
000012000
000000012
00000010
,
00550000
00800000
88000000
50000000
00004300
00003900
000000910
000000104
,
00550000
00080000
88000000
05000000
00004300
00003900
00000043
00000039

G:=sub<GL(8,GF(13))| [5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,3,9,0,0,0,0,9,10,0,0,0,0,0,0,10,4,0,0],[10,6,0,0,0,0,0,0,7,3,0,0,0,0,0,0,0,0,10,6,0,0,0,0,0,0,7,3,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0],[0,0,8,5,0,0,0,0,0,0,8,0,0,0,0,0,5,8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,3,9,0,0,0,0,0,0,0,0,9,10,0,0,0,0,0,0,10,4],[0,0,8,0,0,0,0,0,0,0,8,5,0,0,0,0,5,0,0,0,0,0,0,0,5,8,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,3,9,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,3,9] >;

C42.165D6 in GAP, Magma, Sage, TeX

C_4^2._{165}D_6
% in TeX

G:=Group("C4^2.165D6");
// GroupNames label

G:=SmallGroup(192,1271);
// by ID

G=gap.SmallGroup(192,1271);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,1571,570,297,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽